
Audio Waveform 1

“Catch a wave
and you’re sittin’ on top of the world.”
 — “CATCH A WAVE,” THE BEACH BOYS, SURFER GIRL (CAPITAL RECORDS, 1963)

Ask a cartoonist to draw sound and they’ll likely come up with something 
quite similar to Figure 1.1. These sketches of sound have technical merit.

When a guitar is strummed, a drum struck, or a trombone blown, we know 
sound will follow. The motion of the soundboard of the guitar, the vibration 
of the heads of the drum, and the resonance of the air within the plumbing 
of the trombone ultimately drive the air nearest our eardrums into action. 
We hear the air vibrate near us due to a chain of events that started perhaps 
some distance away at any such musical instrument or sound source. It is 
a separate matter, but we likely hope the sound made is music.

1.1 Medium
The air between a musical instrument and a listener is a springy gas. When 
squeezed together, it pushes back apart. If pulled apart, it snaps back 
together. Picture air as a three-dimensional network of interconnected 
springs, as in Figure 1.2. Any push or tug at just one point causes the whole 
system to jiggle in reaction. A continuous vibration of any one particle leads 
to a corresponding continuous vibration of the whole system. Motion of 
one element causes it to compress and stretch neighboring springs, which 
in turn push and pull against other springs further down the line.

Sound in air is a pressure wave with compressions (increases in air pressure) 
and rarefactions (reductions in air pressure) analogous to the squeezing 
together and stretching apart of elements of this vibrating spring system. 
Particles of air push and pull on one another very much as if connected by 
springs. Displace a bit of the air in one location, such as on-stage, and it 
causes a chain reaction throughout the space to the audience. As long as 
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the source and receiver are near enough to each other, air motion at the 
instrument’s location will eventually cause, however faintly, a bit of air 
motion at the listener’s location.

Slight increases in pressure occur when air particles are squeezed closer 
together. A loudspeaker cone, kick drum head, or piano soundboard moving 
toward the listener will do this. Decreases in pressure occur when air 
particles are pulled apart — the loudspeaker cone, kick drum head, or piano 
soundboard moving away from the listener.

1.2 Amplitude versus Time
The physiology and neurology associated with the human hearing system 
search constantly for changes in air pressure. Passing through the ear 

� Figure 1.1 A sketch of sound radiating outward from a source.
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canal, changes in sound pressure push and pull on the ear drum, triggering 
a chain reaction that ultimately leads to the perception of sound. The 
pressure of a sound wave is the same type of air pressure associated with 
pumping air into a tire: PSI (pounds per square inch) in the some parts of 
the world, or kPa (kilopascals) elsewhere. Micropascals (µPa) is the preferred 
order-of-magnitude expression of air pressure for sound that humans can 
healthily hear.

A common way to graph sound plots air pressure as the vertical axis and 
time as the horizontal axis. Such a graph describes sound at a single, fi xed 
location in space. As sound occurs, the air pressure at that point increases 
and decreases several times per second. The familiar plots of sound, in 
textbooks and comic books, accurately portray this concept.

Figure 1.1(a) shows sound as a squiggly line radiating from the sound 
source. Zoom in on the squiggly line and it might look like a sine wave as 
shown in Figure 1.3, or the more general waveform of Figure 1.4. A line is 
drawn to zig and zag, up and down, describing air pressure as it is occurs 
over time. The higher parts of the curve represent instances of increased 
pressure (compression), and the lower parts represent decreased pressure 
(rarefaction). A straight, horizontal line describes no change in pressure 
(i.e., no sound).

A lack of sound does not mean there is no air pressure, rather only that 
there is no change in air pressure. When the air pressure is unchanging, 
our eardrums aren’t moving. In other words, we have nothing to hear.

� Figure 1.2 Air is a springy medium, like a three-dimensional network of springs.
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The horizontal axis in these fi gures meets the vertical axis, not at a pressure 
of zero micropascals, but at the ambient atmospheric pressure around you 
today. The negative amplitudes in these curves represent a reduction in air 
pressure below ambient, not negative pressure. The air pressure is always 
positive; sound represents varying degrees of positive. The precise value 
of pressure where the x-axis meets the y-axis is not an audio concern; it 
is a matter for those who track weather. The ambient pressure published 
in weather reports is the centerline for the pressure oscillations of our 
music.

1.2.1 AMPLITUDE CONFUSIONS

Discussing the amplitude of a signal, it is natural to want to assign it a 
numerical value. Reducing the amplitude of a signal to a single number 

� Figure 1.3 A pure tone — a sine wave.

� Figure 1.4 A general waveform.
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gets a little tricky. What is the amplitude of the signal shown in Figure 1.3? 
The plot shows that at its highest point, it reaches an amplitude of +200  µPa. 
Similarly, the lowest pressure shown is −200  µPa. One might correctly 
describe the signal as having a peak amplitude of 200  µPa or a peak-to-peak 
amplitude of 400  µPa. Because this signal is perfectly sinusoidal, the 
peak amplitude or the peak-to-peak amplitude fully describes the general 
amplitude of the signal, even though it is constantly changing. The amplitude 
of the waveform in between the peaks follows the known pattern of a pure 
tone.

The slightly more complicated waveform of Figure 1.4 unravels this 
amplitude notation methodology. Its positive peak is still 200  µPa, but its 
negative peak is −150  µPa, with several intermediate positive and negative 
peaks in between. If this signal is a musical waveform, it will surely keep 
changing shape, with local maxima and minima that change as the song 
plays. There is no single consistent positive or negative peak. As most audio 
signals lack the perfect symmetry of a sine wave, a better way to express 
the amplitude of an audio waveform is required.

Perhaps the average amplitude would be helpful. This approach is frustrated 
by the fact that audio spends about as much time above zero as below. In 
the case of the sine wave (see Figure 1.3), the average amplitude is exactly 
zero. No matter what the peak amplitude is (it may be raised or lowered by 
any amount), the average amplitude remains zero.

In search of a number that describes the amplitude and does not average 
zero, it might be tempting just to ignore the negative half of the wave. 
Averaging only the positive portion, a nonzero fi gure can at last be 
calculated. This remains problematic. The negative portion of the cycle also 
contributes to the perception of amplitude. Turning up the volume while 
music is being played causes the negative portion of the waveform to 
become more negative still. More extreme amplitudes, positive or negative, 
may be interpreted as louder. The more extreme air pressure changes lead 
to more extreme motion of the eardrum. Humans are impressed by 
amplitude whether a pressure reduction pulls the eardrum outward or a 
pressure increase pushes the eardrum inward. It’s amplitude either way. 
So the negative swings in air pressure must contribute to any numerical 
expression of amplitude as much as the positive ones, and, therefore, 
should not be ignored.

Musical signals, though lacking the perfect symmetry of a sine wave, share 
this tendency to average zero. The springy air, in reaction to the driving 
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action of a loudspeaker, compresses and stretches. Each pressure increase 
is followed by a pressure decrease. At the end of the song, the air returns 
to ambient pressure, the loudspeaker cone returns to its original position, 
and the eardrum returns to its starting point.

One way to allow the negative portion of the oscillating wave to contribute 
to the amplitude calculation is to average the absolute value of the 
amplitude. Make all negative amplitudes positive, keep all positive values 
positive, and fi nd the running average. The resulting expression for 
amplitude can track the perception of amplitude reasonably well. VU meters 
do exactly this, averaging the absolute value of the amplitude observed 
over the preceding 300 milliseconds.

There is further room for improvement: root mean square (RMS). Measuring 
RMS amplitude properly allows both negative and positive parts of the 
wave to infl uence the resulting number for amplitude. RMS might best 
be understood by working through the acronym in reverse. Square the 
amplitudes to be measured, so that a positive value always results. Take 
the mean (a.k.a. average) value of the amplitudes observed. Finally take the 
square root of the result to undo the fact that the contributing amplitudes 
were all squared before being averaged.

RMS amplitude is more convenient for scientists and equipment designers, 
as it is this type of average amplitude that must be used in calculations of 
energy, power, heat, etc. Audio engineering rarely needs such precision. 
The simpler absolute value average of the VU meter is almost always a 
suffi cient indicator of amplitude.

1.2.2 TIME IMPLICATIONS

The amplitude versus time plot reveals fundamental information about 
audio waveforms. A pure-tone sine wave (see Figure 1.3) consists of a 
simple, never-changing pattern of oscillation. Measure the length of time 
associated with each cycle to determine the waveform’s period. Count the 
number of times it cycles each second for a determination of its frequency. 
Period is the time it takes for exactly one cycle to occur, with units of 
seconds per dimensionless cycle, or simply seconds. Frequency describes 
the number of cycles that occur in exactly one second, with units of 
dimensionless cycles per second. Therefore, units for frequency live entirely 
in the denominator (per second, or /s) and have been given the alternative 
unit of hertz (Hz).
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Note that counting the number of cycles per second (frequency) is the 
opposite of counting the number of seconds per cycle (period). Mathematically, 
they are reciprocals:

 f
T

= 1  (1.1)

and

 T
f

= 1
 (1.2)

where f = frequency, and T = period.

1.3 Amplitude versus Distance
The springiness of air ensures that any localized changes in air pressure 
near a sound source will cause a chain reaction of air pressure changes, 
above and below the current air pressure, all around that source. Even a 
slight disturbance of air pressure will ripple outward. In order to describe 
the state of air pressure along some distance, a different pair of axes is 
needed: air pressure versus location or air pressure versus distance.

At a fi xed instant in time, a plot is made of the air pressure as a function 
of its location in space. Figure 1.5 shows such a snapshot. Returning to 
Figure 1.1(a), where an illustrator strategically failed to label any axes, one 
can conclude that the curves radiating outward from the sound source 
might be amplitude versus time or amplitude versus distance. The rings of 
Figure 1.1(b) present sound in a slightly different way. This familiar sketch 
of sound is a snapshot of amplitude versus distance, showing just the 
positive peaks of a propagating wave, or just the negative excursions, or 
just the zero crossings. Called isobars, the rings of sound radiating outward 
from the sound source indicate the spatial distribution of points of equi-
valent pressure. This is a helpful image for audio engineers; it works in 
comics too.

The amplitude versus distance expression of sound leads to another 
fundamental property of waveforms: wavelength, which is the distance 
traveled during exactly one cycle. Drive 55 miles per hour for one hour, and 
the distance covered is exactly 55 miles. Distance traveled can be calculated 
through the multiplication of speed by time. The speed of sound in air 
(under normal temperature and pressure) is 344  m/s. The always-friendly 
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metric system does fail us a bit here, as the speed of sound in feet per 
second is about 1,130  ft/s. For rock and roll, it is often acceptable to round 
this down to an even 1,000  ft/s.

To calculate the wavelength, then, multiply this speed-of-sound fi gure by 
the appropriate amount of time. Recalling that the time it takes a wave to 
complete exactly one cycle is, by defi nition, its period:

 λ = cT (1.3)

where λ = wavelength, c = speed of sound, and T = period.

Expressing wavelength as a function of frequency (f) requires substitution 
of frequency for period. Using Equation 1.2:

 λ = c
f

 (1.4)

Precise calculations are straightforward, but it is worth noting that 
wavelengths can be juggled in one’s head in the heat of a recording session 
without resorting to pencil, paper, or calculator, provided the speed of 
sound sticks to the fair approximation of 1,000 feet per second.

A representative middle frequency is a 1-kHz sine wave. Using Equation 
1.4,

� Figure 1.5 A snapshot in time shows amplitude over a distance from sound 
source to receiver.
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Recalling the units underlying hertz are cycles per second (/s),
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which leads to the fi nal result for the convenient, approximate wavelength 
for a 1,000-Hz sine wave:

 λ1,000 = 1  ft (1.7)

This middle frequency, 1,000  Hz, which has a period of 1  ms, conveniently 
has a wavelength of approximately 1  ft. This alignment of “ones” — 1  kHz, 
1  ms, 1  ft — is a useful point of reference that an engineer can bring to 
every recording session (Figure 1.6).

1.4 Amplitude versus Frequency
Plots of amplitude versus time and amplitude versus distance are helpful 
and will be used throughout this text. An important third way of describing 
signals must also be understood. When music is enjoyed, listeners are 

� Figure 1.6 The alignment of ones.
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certainly aware that there are changes in amplitude over time at whatever 
location they currently occupy. Without a computer screen in front of them 
offering the information visually, listeners don’t consciously pay attention 
to the fi ne details shown in the amplitude versus time plots.

The physiology of human hearing in fact analyzes sound as a function of 
frequency. The mammalian hearing system breaks sound up along the 
frequency axis. A pure tone is perceived as spectrally narrow and activates 
only a localized portion of the hearing anatomy. More complex sounds 
containing a range of frequencies, such as music, stimulate a broader 
portion of the hearing. Separating sound into different frequency ranges 
allows for the evaluation and enjoyment of sound across a spectral range. 
Humans simultaneously process the low-frequency sounds of a bass guitar 
in parallel with the higher-frequency sounds of a cymbal, all the while 
sorting out the complex detail of a vocal occupying a range of frequencies 
in between.

Amplitude versus frequency (Figure 1.7) is therefore an important graphical 
representation of sound. This plot must make assumptions about space and 
time. Generally, location is fi xed, creating a plot that represents the sound 
at one place only, perhaps the comfortable couch the listener uses when 
listening to their favorite music. In addition, time must be constrained to 
some fi nite duration.

The right hand side of Figure 1.7 shows the amount of amplitude in a signal 
as a function of frequency. Is it for the last second of the signal? The 
preceding minute? The entire song? These time increments are all perfectly 
valid. An engineer might want to know the spectral content of the signal 
for any window of time.

In fact, such a display can be updated continuously, as the audio occurs. 
Real-time analyzers (RTAs) do exactly this. When they are set to a “fast” 
setting, they describe the signal that just occurred over the last 100 
milliseconds or so in the intuitive terms of amplitude versus frequency. 
When they are set to “slow,” that window in time expands to about 1,000 
milliseconds.

The amplitude versus frequency plot therefore represents the signal at a 
fi xed location and for a specifi c duration, identifying the distribution across 
frequency during that part of the signal.
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1.5 Complex Waves
While vocals, guitars, and didgeridoo waveforms are of more musical 
interest, simple building-block waveforms are worthy of study (Figure 1.8). 
The purest tone is a sine wave. This specifi c pattern of amplitude, repeating 
without fail, contains just a single frequency. The sine wave is plotted 
(Figure 1.8a) using:

 Y(t) = Apeak  sin(2πft) (1.8)

where Y(t) is the amplitude (y-axis) as a function of time t (in seconds), Apeak 
is the peak amplitude (likely in volts or units of pressure), and f is the 
frequency of the sine wave (in hertz). For this and all waveform equations, 
readers more comfortable with degrees of phase instead of radians should 
simply replace 2π radians with 360 degrees within the argument of the sin 
function. Therefore, Equation 1.8 would become:

 Y(t) = Apeak  sin(360ft) (1.9)

� Figure 1.7 The frequency content of a signal.

Ch001-K52032.indd   13Ch001-K52032.indd   13 5/30/2007   10:27:14 AM5/30/2007   10:27:14 AM



Sound FX � Unlocking the Creative Potential of Recording Studio Effects

14

Sine waves may be combined (Figure 1.9) to create more complex waves. 
Beginning with a fundamental frequency of 100  Hz, a second and third 
harmonic are added, each with unique amplitude. The resulting waveform 
is simply the continuous algebraic sum of the amplitude of each of these 
three sine waves as time goes by:

� Figure 1.8 100-Hz waveforms: (a) sine wave, (b) square wave, (c) sawtooth wave, and 
(d) triangle wave.

� Figure 1.9 A 100-Hz complex wave with three harmonics.

A B

C D
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 Y(t) = A1  sin(2πft) + A2  sin(2π2ft) + A3  sin(2π3ft) (1.10)

where An is the amplitude of the nth harmonic. In Figure 1.9,

 Y(t) =  sin(2πft) + 0.5  sin(2π2ft) + 0.25  sin(2π3ft) (1.11)

and f = 100  Hz. Any number of sine wave components may be part of this 
mathematical exercise. Specifi c recipes of sine waves should be noted, 
such as those of the square wave, the triangle wave, and the sawtooth 
wave.

1.5.1 SQUARE WAVES

A square wave is described by the following equation:

 Y t
A

n
n ft

n
( ) ( )=

−
−[ ]{ }∑

=

∞4 1
2 1

2 2 1
1

peak
sin

π
π  (1.12)

It is an infi nite sum of precisely these harmonic components. The harmonics 
must fall at exactly these frequencies — these specifi c multiples of the 
fundamental. If any frequency is shifted, even a little, the wave becomes 
nonsquare.

As important as the frequency is, each harmonic must also have the specifi ed 
amplitude. In this case, the amplitude of each harmonic, numbered n, 
decreases inversely with n. That is, the nth harmonic is scaled by the factor 
1/n. The term out front, 4/π, serves to give the full bandwidth square wave 
a convenient peak amplitude of unity. If you increase or decrease the 
amplitude of any or several of the contributing harmonics, the waveform 
becomes less square.

It is important to note that the square wave contains only odd harmonics. 
Harmonics that are even multiples of the fundamental frequency are simply 
not part of the recipe. The presence of any amount of any even multiple of 
the fundamental frequency would make the resulting wave less square. 
Equation 1.12 has become a little clumsy in an effort to force the harmonics 
to always be odd multiples of the fundamental frequency. The term, (2n − 
1), which appears twice in the equation, enables the series to step through 
values of n and create only odd multiples of f. If the series is restated using 
only odd numbers, m, it might be easier to follow:

 
Y t

A
m

mft
m

( )
, , , . .

= ∑
=

∞4 1
2

1 3 5

peak
sin( )

π
π  (1.13)
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� Figure 1.10 100-Hz square wave through the addition of harmonics up to (a) 500  Hz 
(3 harmonics), (b) 1,000  Hz (5 harmonics), (c) 2,500  Hz (13 harmonics), and 5,000  Hz 

(25 harmonics).
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A square wave with a fundamental frequency of 100  Hz and a peak amplitude 
of 1 volt (Figure 1.8b) uses Equation 1.12 or 1.13 to create:

 Y t t t t100
4

2 100
1
3

1
5

2 500
1
7

( ) = + +


+
π

π π πsin( ) sin(2 300 ) sin( ) sin(( )2 700π t + 


. . .  (1.14)

The signifi cance of the harmonics is shown in Figure 1.10. The contribution 
of evermore upper harmonics, in strict adherence to the amplitudes and 
frequencies specifi ed, is clear through visual inspection. The waveform 
becomes increasingly more square as the bandwidth reaches upward and 
the number of harmonics included in the summation grows.

This makes clear the need for wide-bandwidth audio systems when square 
waves (think MIDI, SMPTE, and digital audio) are to be recorded and 
transmitted. A cable that rolls off the high frequencies of the signal within 
will attenuate the necessary harmonics that make up a square wave, in 
effect making a square wave less square. A perfectly square wave is achieved 
only through the rather impractical inclusion of an infi nite number of the 
prescribed harmonics.

1.5.2 SAWTOOTH WAVES

The sawtooth wave might be considered a variation on the square wave 
theme. Retain both odd and even harmonics, continue to diminish the 
amplitude of each nth harmonic by 1/n, rescale the overall amplitude to 
preserve unity peak amplitude, and a sawtooth wave with positive slope 
results (Figure 1.8c):

 Y t
n

nft
n

( ) = − ∑
=

∞2 1
1π

πsin(2 )  (1.15)

A 100-Hz sawtooth wave is built up through increasing bandwidth in Figure 
1.11. Careful calculation through up to n = 50 is shown, but the proper 
sawtooth does not occur until n = •.

The traditional beginning of a sine wave is that instant where the amplitude 
is crossing up through zero toward positive amplitude. The minus sign in 
Equation 1.15 dictates that all sine wave components of a sawtooth initially 
head in the negative direction instead. For this reason, comparison is made 
in Figure 1.11 to a negative sine wave, a sine wave multiplied by −1.
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� Figure 1.11 100-Hz sawtooth wave through the addition of harmonics up to (a) 500  Hz 
(5 harmonics), (b) 1,000  Hz (10 harmonics), (c) 2,500  Hz (25 harmonics), and 5,000  Hz 

(50 harmonics).
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� Figure 1.12 100-Hz triangle wave through the addition of harmonics up to (a) 500  Hz 
(3 harmonics), (b) 1,000  Hz (5 harmonics), (c) 2,500  Hz (13 harmonics), and 5,000  Hz 

(25 harmonics).
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The sum of all sine waves in the equation (an infi nite number of precisely 
scaled multiples of fundamental frequency f ) causes the net wave to 
leap to −1 before steadily rising toward +1. The instant when the saw-
tooth wave reaches +1 is also the fortuitous instant when each and 
every component harmonic happens to be beginning a negative cycle 
anew. This symphony of sine waves crossing upward through zero but 
multiplied by −1 causes the net amplitude to snap to −1 again. The pattern 
repeats.

1.5.3 TRIANGLE WAVES

The triangle wave (Figure 1.8d) comes from a different set of carefully 
scaled odd harmonics:

 Y t
A

n
n ft

n

n
( )

( )
( )

( )

= −
−

−[ ]∑
−

=

∞8 1
2 1

2 2 1
2

1

2
1

peak

π
π  (1.16)

In addition to the requisite scaling to achieve unity peak amplitude and the 
use of the term (2n − 1) to generate odd harmonics, notice the additional 
need for an alternating polarity among the harmonic components. The 
term, −1(n−1) causes the harmonics to switch sign with each increment of n. 
The polarity of every other harmonic is positive, while the polarity of each 
harmonic in between is negative. The summation of these particular 
components, some adding to the total while others subtract, leads to a 
triangle wave.

Figure 1.12 demonstrates the signifi cance of adding additional harmonics 
to the fundamental sine wave. As the amplitude of successive harmonics 
falls proportional to 1/n2, this complex wave is more dependent on lower 
harmonics than the square and sawtooth waves. This is evident in two 
ways. Note the towering signifi cance of the lower harmonics on the right-
hand side of Figure 1.12. Note also how the wave obtains its characteristic 
sharpness and comes quite close to resembling the full bandwidth shape 
with just 13 harmonics.

Very much as multitrack music is built from a mix of component production 
elements such as drums, bass, keys, and vocals, individual pitched 
waveforms that make up each multitrack element are themselves made up 
of a specifi c mix of sinusoidal components. It is our job to make art from 
these humble ingredients.
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1.6 Decibel
It is diffi cult to do anything in audio and not encounter the decibel. As 
discussed below, the decibel offers a precise calculation that quantifi es 
properties of an audio signal in a very useful form. The fact is one may 
never trouble to dig out these equations and perform a decibel calculation 
during the course of a recording session. But the hardware designers and 
software code jockeys who create the effects processors and recording 
devices that fi ll the studio certainly do. If an audio engineer is to speak 
comfortably and accurately about decibels, it helps to know a little of the 
math that makes it possible. Those who are bored or frustrated by the math 
should at least know that someone went to a lot of trouble to fi nd a way to 
express the level of the signal in a way analogous to the expression of pitch. 
The decibel offers a perceptually meaningful description of amplitude, one 
that the ears and brain can make sense of.

The decibel appears in some form on almost every faceplate and every user 
interface of every signal processor in the recording studio. Understanding 
the meaning of quantities in decibels is essential to understanding sound 
effects. There is an equation that absolutely defi nes the decibel (dB):

 dB log
power
power

10
A

B

= × 





10  (1.17)

The English translation of that equation goes something like, “The decibel 
is ten times the logarithm of the ratio of two powers.” This straightforward 
statement is rich with meaning.

The equation for the decibel has two features built-in. First is the logarithm. 
The mathematical properties of this function are considered in detail shortly, 
but it is important to understand the motivation for digging up the 
logarithmic, or log, function in the fi rst place. The log is part of the decibel 
equation to make the math more convenient. It makes the vast range of 
amplitudes typical of audio much easier to deal with.

The second key element of the decibel equation is the ratio of powers 
within parentheses. The decibel equation uses a ratio so as to be consistent 
with the human perception of power and related quantities. The equation 
attempts to create a number that describes the amplitude of a musical 
waveform. For the decibel to be useful, the resulting number needs 
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to have some connection to the human perception of this property of 
sound.

These two feature — log and ratio — make the decibel a versatile and useful 
way to express the amplitude of our musical waveforms.

1.6.1 LOGARITHM

The log represents nothing more than a reshuffl ing of how the numbers 
are expressed. The two following equations are both true and say very 
nearly the same thing:

 10y = X (1.18)

 log10X = y (1.19)

Equation 1.18 is relatively straightforward. Ten raised to the power y gives 
the result X. For example:

 103 = 10 ¥ 10 ¥ 10 = 1,000 (1.20)

The logarithm enables us to undo the calculation mathematically. Starting 
with the answer from above, 1,000, the log function leads back to 3.

 log10(1,000) = 3 (1.21)

Said another way, Equation 1.19 answers the question, “What power of 10 
will give us this number, X?” To take the log of 1,000 as in Equation 1.21 
is to ask, “What power of 10 gives us 1,000?” The answer is 3: 103 = 1,000, 
so log10(1,000) = 3.

What power of 10 will give us 1,000,000? With an eye for powers of 10, or 
perhaps with the help of a calculator, it is easily confi rmed that the 
log10(1,000,000) = 6. Ten raised to the sixth power gives us one million, as 
Equation 1.9 would describe it. Now calculate the power of 10 that gives 
100 trillion: log10(100,000,000,000,000) = 14.

Herein lies the motivation for logarithms in audio. They make big numbers 
— potentially very big numbers — much smaller: 100,000,000,000,000 
becomes 14. It converts governmental budgets into football scores.

The log function is an acquired taste. Those with little or no exposure to 
them will likely fi nd the logarithm awkward at fi rst.
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There’s an interesting twist, so follow along in Figure 1.13. The log function 
calculates the power of 10 needed to create a number — any number 
greater than zero. So while the log10(100) = 2 and the log10(1,000) = 3, the 
log function can also fi nd values in between. For example, the log10(631) is 
about 2.8. In other words,

 102.8 = 631 (1.22)

To know this, a calculator, a computer, a slide rule, a class geek, or some 
tables full of logarithm answers are required. These aren’t calculations 
easily done in the head, with the help of counting on fi ngers and toes.

The logarithm mathematically connects a potentially very large number, 
and it can be any number greater than zero, to a much smaller number. 
This is useful because the range of amplitudes humans can hear is truly 
vast. The smallest sound pressure that average healthy humans can hear, 
rounded off for convenience, is about 20 micropascals. Compare that 
amount to the amplitude of air pressure associated with the onset of physical 
pain in our hearing system. (Please note: The risk of hearing damage starts 
well before the pain begins, so listen safely and wisely. Please do not risk 
hearing damage.). Pain starts happening at about 63,000,000 micropascals. 
The difference between detection and pain in the human experience of air 
pressure is many millions of micropascals. Listening to a conversation at 

� Figure 1.13 The logarithm mathematically connects a potentially very large number to a 
much smaller number.
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normal levels might occur with amplitudes of around 20,000 micropascals. 
It is reasonable to monitor a pop mix at about 630,000 micropascals. One 
might occasionally crank it to more than 6,000,000 micropascals. Even at 
this level, the neighbors aren’t complaining, the drummer wants it louder, 
and, if it doesn’t go on for too long, there isn’t much risk of hearing damage 
yet. Jet engines and power plants are much, much louder still, on the order 
of hundreds of millions of micropascals.

The problem with these numbers is clear: they are too big to be useful in 
the studio. “Yeah, let me push the snare up about 84, pull the strings down 
about 6,117, and see if the mix sits right at 1,792,000.” This is too awkward; 
the decibel to the rescue. The mathematical log function exhibits the 
following helpful property:

 log10(BIG) = small (1.23)

The log of a big number results in a much smaller number. Human hearing 
is capable of interpreting a vast range of amplitudes. The numbers used to 
describe amplitude become unwieldy if not routinely subjected to the 
logarithm, so it is a fundamental part of the decibel equation.

1.6.2 RATIOS

Also built into the decibel equation is a ratio (consult again Equation 1.17). 
Mathematically, a ratio strategically reduces two numbers to a single, 
informative number.

Consider pitch. Musical harmony is built on ratios. The octave, for example, 
represents a doubling of pitch, a ratio of 2  :  1. The orchestra tunes (generally) 
to A440. Also identifi ed as A4, this is the fi rst A above middle C. A440 is a 
musical note whose fundamental frequency is exactly 440  Hz. Double that 
frequency to 880  Hz to create a note exactly one octave higher. To lower 
the pitch by exactly one octave, reverse the ratio (e.g., 1  :  2, or mathematically, 
1/2 = 0.5). That is, cut the frequency in half. An octave below A440 has a 
fundamental frequency of 220  Hz.

All the musical intervals represent ratios. The numerical value of the ratio 
represents a scaling factor that, when multiplied by the starting frequency, 
fi nds the new frequency needed to reach the desired musical interval. As 
the intervals deviate from the octave, the ratios are no longer built on 
simple whole numbers, and the exact ratios depend on the type of tuning 
used. For example, a perfect fi fth is a ratio of 3  :  2 (3/2 = 1.5) in just intonation. 
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In equal-tempered tuning, a perfect fi fth is achieved by multiplying by about 
1.498. A perfect fourth represents the ratio of 4  :  3 (4/3 = 1.3333) in just 
intonation, but the slightly different 1.3348 for equal temperament. No 
matter which form of tuning is selected, it is always a ratio that rules. In 
order to create a note that is a specifi ed musical interval away, multiply the 
starting pitch by the value of the appropriate ratio.

It doesn’t make musical sense to think in terms of the actual number of 
hertz between two notes. A big band arranger won’t ask the trumpet player 
to play 217  Hz above the tenor sax. Instead, ratios are used. Score the horn 
a minor third above, or an octave above, and the trumpeter can oblige.

Looking at Figure 1.14, consider each note’s fundamental pitches mathe-
matically, not musically. Start two E’s below middle C, labeled E2. It has 
a fundamental frequency of about 821/2  Hz — a meaningless observation for 
the performing musician, perhaps, but an important one for the recording 
musician. Up one octave, the pitch is exactly twice the starting pitch. That’s 
the very defi nition of an octave. One octave up leads to E3, with a 
fundamental pitch of about 165  Hz (2 ¥ 82.5). One more octave up is E4, the 
fi rst E above middle C. E4 has a fundamental pitch of about 330  Hz. E5 is 
yet another octave above and has a pitch of about 660  Hz. Four pitches, one 
musical value. They are all labeled “E,” and they all sound very similar, 
musically speaking. In harmony, E at any octave performs very nearly 
identical functions.

What’s the difference between one E natural and the next E up? An octave. 
But there’s a subtle illusion going on here. Using Figure 1.14, watch as the 
absolute numbers fail and the ratio takes over. The “distance” (as measured 
in hertz) from E2 to E3 is 82  Hz. This 82-Hz difference has meaning to the 
human hearing system; it’s an octave. Starting at E3 and going up to E4 
traverses an octave again. However, measured in hertz, this octave 
represents a difference of 165  Hz. E4 to E5 is an octave, worth 330  Hz.

� Figure 1.14 Frequency changes of the octave.
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An octave equals 82  Hz in one instance, 165  Hz in another situation, and 
then 330  Hz in the third case. The octave cannot be expressed in hertz 
unless the starting pitch is known. It can always be expressed as a ratio: 
2  :  1.

The musical signifi cance of the octave is well known, offering the most 
consonant (i.e., least dissonant) pairing of two notes of different pitches. 
Experienced musicians also attach specifi c sensory meaning to many 
(probably all) of the other intervals: the buzz of the perfect fi fth, the warmth 
of the major third, and the bittersweet mood of the minor seventh. Such 
complex, advanced human feelings about the pitch differences between 
two notes reduce almost insultingly to some pretty straightforward math. 
To go up an octave, multiply by 2. Done. It doesn’t matter what the starting 
pitch is.

Minor headache: Beyond the octave, the numbers aren’t so neat. To go up 
a perfect fi fth in the most common form of tuning in pop music, equal 
temperament, simply multiply by about 1.49830708. To go up a major third 
(in equal-tempered tuning) multiply by the unwieldy (and rounded off) 
1.25992105. The numbers are rather unappealing. But the fundamental 
principle is comfortingly straightforward. Don’t add a certain number of 
hertz to go up by a certain musical amount. Instead, multiply by the 
numerical value of the appropriate ratio.

The idea of the ratio is built into our musical pitch-labeling scheme. Notes 
are described on the familiar musical staff and labeled with the familiar 
short, repeating alphabet from A to G. Peek at the numbers and something 
peculiar is revealed. If we plot the musical staff using linear mathematics, 
in which all the lines and spaces of our traditional notation system are 
spaced an equal number of hertz apart rather than simply an equal distance 
apart, we get the rather strange looking staff shown in Figure 1.15. The 
traditional notation scheme masks the actual quantities involved — for 
good reason. The musical relevance of the notes is captured in the notation 
system. The relationship between C and G is always the same: it’s a perfect 
fi fth at any octave at any location on the staff. Therefore, it is shown that 
way on paper. It isn’t musically important how many hertz apart two notes 
are, but it is certainly important how many lines and spaces apart they are, 
as arrangers well know.

The keyboard of the piano presents the same illusion, physically. Figure 
1.16 shows a piano in which the number of hertz between the notes 
determines the physical size and location of the keys, which are unplayable 
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and unmusical. The layout of a proper keyboard repeats a pattern based 
on the musical meaning of the notes, not the linear value of the frequencies 
of the notes.

Ratios are a part of music. On sheet music and on the keyboard, the ratio 
is a proven, convenient way to take physical properties and rearrange them 
in a way that is consistent with their musical meaning. As with pitch 
(frequency), so it is with amplitude (voltage or pressure). That is, human 
perception “consumes” musical pitch in a relative way. It is the ratio 
relationship between notes that creates musical harmony, not their value 
in hertz. The human perception of amplitude behaves similarly, so a way 
to quantify the amplitude of audio signals that has musical meaning is 
needed. The decibel, built in part on the ratio, accomplishes this.

Research has shown that in order to double the apparent loudness of a 
signal, the power must increase approximately tenfold (Figure 1.17) Starting 
with a power of 1 watt, doubling the apparent loudness leads to 10 watts. 
Doubling the loudness from 1 watt required an increase of 9 watts. Repeat 
this exercise starting at a different power. Beginning with 10 watts, doubling 
the loudness requires that the power be scaled up ten times to a new value 
of about 100 watts. This doubling in loudness requires an increase of 90 
watts. The next doubling, to 1,000 watts, comes courtesy of a 900-watt 
addition of power. In all cases, the perceptual impact was the same: the 
signal became roughly twice as loud. This is the power amplitude analogy of 
the octave. Here, we are talking about loudness, not pitch. But just as the 
perception of pitch is driven by a ratio (multiply by 2 to go up an octave), so 
is the perception of power (multiply by 10 to double the apparent loudness).

� Figure 1.15 The linear staff.
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� Figure 1.16 The linear piano.
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The equation for the decibel, therefore, has a ratio built in. As Figure 1.17 
reveals, the decibel difference between each of the power settings is always 
the same: 10 decibels. For each equivalent perceptual change, the actual 
number of watts needed is different, depending on the initial power setting. 
The decibel equation brings consistency in numbers to a consistent sensory 
event. The amount of change required to double the loudness — to have 
the same perceptual impact on our listening systems — is always 10  dB.

Decibels provide engineers the amplitude equivalent of the musical pitch 
labeling scheme. They convert the physical quantity into a numerical 
expression that is highly consistent with the perception of that quantity. 
Through experience, audio engineers develop a very specifi c idea in their 
mind about what a 3  dB or 6  dB increase in level sounds like. Experienced 
musicians are able to start at one pitch and fi nd by ear any other pitch, be 
it up an octave, or down a fi fth, or any other interval away. Music schools 
offer ear training to teach this ability for pitch. Audio schools offer audio 
ear training to accomplish the same thing, in the amplitude domain.

1.6.3 REFERENCES

A close look at the decibel equation reveals that it is a single number 
expression for two numbers. That is, 30  dB represents a comparison of one 
number to another. It does not make sense to say that a power of 1,000 
watts equals 30  dB. To use 1,000 watts in the decibel equation (Equation 
1.17), a second wattage must be put into the ratio. Starting with a reference 
of 1 watt, it is correct to calculate that 1,000 watts is 30 decibels higher than 
1 watt:

 10
1 000

1
30× 



 =log10

,  (1.24)

The decibel is meaningless without mentioning two numbers. It is always 
necessary to compare two numbers with the decibel. Often, an engineer 

� Figure 1.17 The power changes of perceived doublings.
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wishes to make statements that compare amplitude to the current value, 
as in, “Turn the snare up 3  dB.” That is shorthand for, “Make the amplitude 
of the snare 3 decibels louder than the current amplitude.” If one were to 
resort to the equation, the current amplitude is used in the bottom of the 
ratio (the denominator), and the top of the ratio (the numerator) gets the 
amplitude of the new, louder snare that is desired. Of course, this equation 
is never used during a session. The faders on a computer screen or on a 
mixer are labeled in decibels already. Someone else already did the 
calculations for us.

If a signal isn’t being compared to its current value, then it is compared to 
some reference value. A good starting point might be a reference of 1 watt; 
10 watts is 10  dB above this reference, and 100 watts is 20  dB above the 
same reference. So the correct way to express decibels here is something 
like, “100 watts is 20 decibels above the reference of 1 watt.”

It gets tiring, always expressing a value in decibels above or below some 
reference value. Here’s the time saver: If the reference is 1 watt, express it 
as dBW (pronounced, “dee bee double you”). The “W” tacked on to the 
end identifi es the reference as exactly 1 watt. This shortens the statement 
to, “100 watts is 20  dBW.” Done. The reference, which is required for the 
decibel statement to be meaningful, is attached to the dB abbreviation.

Note that the statement is not, “100 watts is 20  dB.” That is incorrect. A 
single number is not expressible as a decibel. There must be some value 
stated as a point of comparison. Using “dBW” instead of just “dB” is the 
subtle addition that gives these statements meaning.

So while Equation 1.17 is the general equation for the decibel, a more 
specifi c equation using a reference of 1 watt is helpful:

 dBW log
power
1watt

10= × 





10  (1.25)

Other subequations exist, with different reference values. For example, 
sometimes 1 watt is too big to be a useful reference power. Use the much 
smaller milliwatt (0.001 watt) instead. If the power reference is one milliwatt, 
the suffi x attached to dB is a lower case “m,” for milli:

 dBm log
power

watt
10= × 





10
0 001.

 (1.26)
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A little physics lets us leave the power domain and create expressions 
based on the quantities we see more often in the studio: sound pressure 
and voltage. Sound pressure decibel expressions use the threshold of 
hearing (20 micropascals) as the reference pressure, and we tack on the 
suffi x “SPL” to express sound pressure level in terms that have perceptual 
meaning:

 dBSPL log
pressure

Pa
10= × 





20
20 µ

 (1.27)

Note that the equation changes a little. Instead of multiplying the logarithm 
by 10, sound pressure statements require multiplication by 20. This is a 
result of the physical relationship between acoustic power and sound 
pressure. Power is proportional to pressure squared. The sound power 
terms within Equation 1.17 become sound pressure squared instead. It is a 
property of logarithms that this power of two within the logarithm may be 
converted to multiplication by two outside the logarithm. Hence the 10 
becomes 20 for decibel calculations related to pressure. Likewise, we can 
use decibels to describe the voltage in our gear. Electrical power is 
proportional to voltage squared, so again we use a 20 instead of a 10 in the 
decibel calculations for voltage.

In the voltage domain, a few references must be dealt with:

 dBu log
voltage

volt
10= × 





20
0 775.  (1.28)

 dBV log
voltage

volt
10= × 





20
1  (1.29)

It is a quirk of history that the unwieldy reference of 0.775 volt was chosen. 
The interested reader can use Ohm’s Law to apply a standard 1 milliwatt 
of power across a load of 600 ohms (which was a standard in the early 
telecommunications industry, not audio). A voltage of 0.775  V results. Even 
as the idea of a 600-ohm load lost its signifi cance in the modern professional 
audio industry, the quirky standard voltage remains. Someone, tired of the 
clumsiness of that number, chose an easier to remember reference: 1 volt. 
Good idea. Confusing result. Too many standards. It sort of misses the point 
of a “standard,” doesn’t it? The output voltages specifi ed in the back of the 
manual for any signal-processing device might be expressed in dBu, for 
example, +4  dBu. Or it might show up in dBV, like −10  dBV. In both cases, 
the manual is just indicating the nominal output level, relative to a chosen 
industry reference voltage.
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1.6.4 ZERO DECIBELS

The meaning of zero decibels must be considered. When a meter of a signal 
processor reports a value of 0  dB, it does not mean that no signal is present. 
It in fact means that the amplitude is identical to the reference.

Working in dBu, consider an input that is 0.775 volt. Expressing this input 
in dBu using Equation 1.28, we get:

 dBu log
0.775

0.775 10= × 



20

0 775.
 (1.30)

dBu0.775 = 20 × log10(1) (1.31)

Importantly,

 log10(1) = 0 (1.32)

Therefore, the special case of having an input identical to the reference 
voltage leads to:

 dBu0.775 = 20 × 0 (1.33)

 dBu0.775 = 0  dBu (1.34)

When the signal hits zero, be it 0  dBu, 0  dBV, or any other decibel reference, 
the amplitude equals the reference.

1.6.5 NEGATIVE DECIBELS

The log of one is zero (see Equation 1.32). The log of a value greater than 
unity is a positive number; it’s greater than zero. The log of a value less 
than unity is a negative number; it is less than zero.

So when a signal is greater than the reference value being used (0.775 volt, 
using dBu for example), the decibel calculation produces a positive result. 
Any positive expression of decibels indicates a signal is higher in amplitude 
than the reference.

When a signal is less than the reference, the decibel calculation gives 
a negative result: +3  dBu indicates a signal that is 3 decibels greater 
than 0.775 volt, and −3  dBu indicates a signal that is 3 decibels less than 
0.775 volt.
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Discussing amplitude with units of micropascals or volts, while technically 
correct and quantitatively useful, is not productive in the recording studio. 
A different expression of amplitude is preferred. The decibel gives audio 
engineers a way to communicate matters related to amplitude that is 
perceptually meaningful and musically useful. So don’t turn it up 2 volts, 
turn it up 6  dB!

1.7 Dynamic Range
Musical dynamics are so important to a composition and performance that 
they are notated on every score and governed closely by every bandleader, 
orchestra conductor, and music director. Making clever use of loud parts 
and soft parts is a fundamental part of performance, composition, and 
arranging in all styles of music from classical to jazz and folk to rock. In the 
studio, we must concern ourselves with a different, but related sort of 
dynamics (Figure 1.18): audio dynamic range.

Exploring the upper limit of audio dynamic range comes naturally to most 
musicians and engineers. The music is often turned up until it distorts. It is 
as if the instruction manual required it. The volume setting on everything 
from guitar amps to home stereos is often found to push the limits, fl irting 
with distortion. It is a basic property of all audio equipment: turn it up too 
loud and distortion results.

At the other amplitude extreme lives a different audio challenge. If the 
musical signal is too quiet, the inherent noise of the audio equipment itself 

� Figure 1.18 Audio dynamic range.
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becomes audible and possibly distracting. Cassette tapes with their 
characteristic hiss and LPs with their crackles and rumble demonstrate the 
challenge that a noise fl oor presents. In fact, all audio equipment has a 
noise fl oor — equalizers, compressors, microphones, and even patch cables. 
Yes, even a cable made of pure gold, manufactured in zero gravity during 
the winter solstice of a leap year, costing half a year’s salary, will still have 
a noise fl oor, however faint.

A constant part of the recording craft then is using all these pieces of audio 
equipment in that safe amplitude zone, above the noise fl oor but below the 
point at which distortion begins. That safe zone is, in fact, the audio dynamic 
range. It defi nes and, using decibels, quantifi es the range of usable am-
plitude between the noise a piece of gear makes and the level at which the 
piece of equipment starts to distort.

The target in between these two extremes is typically labeled zero VU. 0  VU 
is a nominal level for a signal through a piece of equipment. At 0  VU, the 
music gets through well above the self-noise of the equipment, but safely 
under the point where it starts to distort.

If we recorded pure sine waves for a living, we would raise the signal 
amplitude up just to the point of distortion, back off a smidge in level, and 
hit record. Thankfully, musical waveforms are nothing like sine waves. The 
amplitude of a musical waveform races wildly up and down due to both the 
character of the particular musical instrument and the way it is being played. 
Musical instruments lack the amplitude predictability of a sinusoid.

Some signals are more predictable than others. Electric guitars amps 
cranked to the limit have very little dynamic range. Many guitar sessions 
fi nd the engineer recording the way Nigel does, with the amp set to 11. 
Many (but not all) guitar amps sound best when they are cranked to within 
inches of their lives. This leaves no room for audio peaks to get through at 
a higher level. The meters on the mixing console and the multitrack recorder 
simply zip up to 0  VU at the downbeat, and then barely move until the end 
of the song. Chugga chugga crunch Ch-Chugga. Chugga chugga crunch 
Ch-Chugga. The meters do not budge until the guitarist stops playing. 
Crunchy rhythm rock-and-roll guitars are a case study in limited dynamic 
range.

Percussion, on the other hand, can be a complicated pattern of hard hits 
and delicate taps. Such an instrument is a challenge to record well, 
presenting extremely wide and diffi cult to predict dynamic range.

Ch001-K52032.indd   34Ch001-K52032.indd   34 5/30/2007   10:27:17 AM5/30/2007   10:27:17 AM



Chapter 1 � Audio Waveform

35

Every instrument offers its own complicated dynamics. The musical dynamic 
range of the instrument must somehow be made to fi t within the audio 
dynamic range of the studio’s equipment. Otherwise, the listeners are going 
to hear distortion, noise, or both.

Accommodating the unpredictability of all musical events, we record at a 
level well below the point where distortion begins. The amplitude “distance” 
(expressed in decibels) between the target operating level and the onset of 
distortion is called headroom. This provides the engineer a safety cushion, 
absorbing the musical dynamics of the instrument recorded without 
exceeding the audio dynamic range of the gear used to capture the 
recording.

The relative level of the noise fl oor compared to 0  VU, again expressed in 
decibels, is the signal-to-noise ratio. It quantifi es the level of the noise, 
relative to the nominal signal level. The trick, of course, is to send the audio 
signal through at a level well above the noise fl oor so that listeners will not 
even hear that hiss, hum, grit, and gunk that might be lurking low in the 
piece of equipment.

Making effective use of dynamic range infl uences how audio engineers 
record to any format, from analog tape to digital hard disk. It also governs 
the levels used when sending audio through a compressor, delay, reverb, 
or any other type of audio equipment. It is a constant tradeoff of noise at 
low amplitudes versus distortion at high amplitudes.

1.8 Sound Misconceptions
With a more thorough understanding of the audio waveform, common 
errors in understanding and judgment can be avoided.

1.8.1 MISTAKING THE MESSAGE FOR THE MEDIUM

The transmission of sound from a source to a receiver does not require the 
delivery of air particles from the sound-making object to the listener. Sound 
waves propagate from the source to the receiver. The actual carrying 
medium — the air — does not. The springiness of air ensures that as the 
sound source drives the air, its infl uence spreads outward. The infl uence 
of air should not be confused with actual one-way motion of air. When a 
loudspeaker cone sends music towards a listener, it does not do so by 
sending a steady breeze of air into the person’s face. The pressure wave 
propagates; the air essentially stays put.
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During the sound event, the air molecules stay in the same general space, 
moving about in a cloud as molecules are wont to do. As the pressure wave 
passes, these constantly moving gas particles are squeezed together and 
pulled apart slightly by the approach and retreat of neighboring air 
molecules or the vibration of the sound-producing instrument. After the 
sound wave has departed, the air molecules return to their original 
approximate locations.

Humans listen to the message carried by air. There is no reason to be 
particularly interested in any specifi c air particles themselves.

1.8.2 DON’T PICTURE THESE SKETCHES

The actual motion of the air particles associated with sound is in the same 
direction as the propagating sound wave itself. A wave propagating left to 
right causes the brief, organized jiggle, left and right, of air particles as the 
compression/rarefaction cycle occurs.

When the motion of the particles is in the same direction as the propagation 
of the wave, it is classifi ed a longitudinal wave. Sound does not belong to 
the slightly more intuitive family of waves known as transverse waves. 
Transverse waves have particle motion perpendicular to the wave motion. 
Making waves in water or snapping a rope demonstrates transverse waves. 
Toss the proverbial pebble in the allegorical still pond, and the vertical 
disruption of water ripples horizontally outward. Up and down motion of 
the end of a rope triggers a wave of up and down motion that is transmitted 
through the length of the rope. This seemingly insignifi cant fact — sound 
waves are longitudinal — causes some headaches when describing sound 
and has lead many an audio enthusiast into confusion.

Consider sound propagating from a loudspeaker toward a listener. Is the 
sound curving back and forth, up and down, as it heads horizontally from 
the speaker to the ears? No, it most defi nitely is not. For the sound heading 
from a loudspeaker to a listener in the same horizontal plane, there is 
nothing up and down about it. When sound propagates horizontally, the 
most interesting motion of the air particles is horizontal too. It might be 
sketched as a wave curving up and down, but the air particles in fact move 
only side to side.

We resort to drawing up and down lines because it is too diffi cult to draw 
it literally (Figure 1.19). The clouds of air particles gathering into patterns 
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of increased and decreased density is correct, but tedious to draw and 
clumsy to study.

So the pressure versus time plots (see Figures 1.1a, 1.3, and 1.4) are the 
preferred depiction of sound over time. One must keep in mind, however, 
that these graphs are a description of sound, but not a literal illustration of 
sound.

� Figure 1.19 A pressure wave between source and receiver.

Ch001-K52032.indd   37Ch001-K52032.indd   37 5/30/2007   10:27:17 AM5/30/2007   10:27:17 AM




